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Abstract-It is the purpose of this paper to construct conservation laws for the statics and dynamics
of nonhomogeneous Bernoulli-Euler beams. To derive these conservation laws, we will use the
newly proposed Neutral Action (NA) method (Honein et al., 1991, Phys. Lett., ISS, 223-224;
Chien, 1992, Conservation laws in nonhomogeneous and dissipative mechanical systems, Ph.D.
Dissertation, Stanford University). The conservation laws derived should be useful in characterizing
concentrated defects, such as cracks and interfaces, in an otherwise smoothly nonhomogeneous
beam.

Classically, Noether's first theorem (Noether, 1918, Transporl Theory Stat. Phys. I, 186-207)
is available for construction ofconservation laws for Lagrangian systems, such as a Bernoulli-Euler
beam. However, since the NA method is applicable to dissipative as well as to Lagrangian systems,
and since it encompasses Noether's method within the realm of Lagrangian systems, we choose to
employ the NA method to achieve our purpose here. A comparison of these two methodologies,
with an example illustrating the relative efficiency of the NA method over Noether's approach, will
also be presented.

I. INTRODUCTION

Since the introduction of the J, Land M integrals in elastic solids, the importance of path
independent integrals has been widely recognized. These path-independent integrals are
representations, in divergence-free form, ofconservation laws in material space. Classically,
for Lagrangian systems, conservation laws can be obtained via Noether's first theorem
(1918). Details of this classical method can be found, for example, in Logan (1977), Olver
(1986) and Bluman and Kumei (1989). Until recently, Noether's methodology was the only
systematic approach available for construction ofconservation laws, but it is valid only for
nondissipative systems. However, in a recent brief note entitled "On Conservation Laws
for Dissipative Systems" (Honein et al., 1991), a new approach for constructing con
servation laws was proposed. It was termed the "Neutral Action (NA)" method in Chien
(1992). Given any system governed by a set ofdifferential equations, the NA method allows
one to systematically obtain conservation laws that are valid for the system considered.
Since the basic building block for conservation laws is the governing differential equations,
this new method can be applied to Lagrangian systems as well as to dissipative systems
without a Lagrangian, Le. to any set of differential equations, regardless of whether they
are the Euler-Lagrange equations of a variational problem or not.

It is the purpose of this present contribution to derive conservation laws for the statics
and dynamics of a nonhomogeneous Bernoulli-Euler beam using the NA method. Also,
the NA method will be compared to the classical Noether's first theorem within the context
of Lagrangian systems.

The conservation laws presented here are not exhaustive, but as a limited set, they
should provide valuable insights into the behavior of non-homogeneous beams. A typical
use of these laws is in the analysis of defect mechanics, such as jump-discontinuities and
cracks (Kienzler and Herrmann, I 986b) in an otherwise smoothly nonhomogeneous beam.

2. NEUTRAL ACTION (NA) METHOD FOR CONSTRUCTING CONSERVATION LAWS

Given any system with m independent variables Xi (i = I, 2, ... , m), n dependent
variables zi' (k = 1,2, ... ,n), the governing set of q equations can be represented by:
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(I)

Using the multi-index notation introduced by Olver (1986), u1 in eqn (I) represents all
possible pth order partial derivatives of if,

with J = (jl> h, ... , jp) as an unordered p-tuple of integers, 1 ~j~ ~ m indicating which
derivatives are being taken, and # J p indicating how many derivatives are being taken.

For any system governed by a set of differential equations as in eqn (I), the "Neutral
Action (NAY' method proposed by Honein et al. (1991) states that it is possible to construct
conservation laws valid for the system in the form:

if

f~ti.~ = D·pi = 01 , (2)

(3)

for all dependent variables if. Here, r = r(x i
, if, zI;) are the unknown characteristics of

conservation laws, pi = pi(Xi, if, zI;) are the conserved currents of the balance law DiPi = 0,
and Ek is the Euler operator defined as :

k fjL
E(L)=(-D)Jfjzl;' O~#J~p,

with

representing all possible pth order total derivatives, and

(4)

Also, summation over dummy indices is assumed throughout this paper.
Since our objective is to construct some divergence-free expressions out of rti.~, and

since the Euler operator acting on any total divergence always yields a null result by the
calculus of variations, it follows that eqn (3) is a requirement for the existence of con
servation laws. Equation (3) also implies that rti.~ is a null Lagrangian whose action
integral,

(5)

has vanishing variation for any dependent variable if, Le. <5A == O. In other words, in order
to construct conservation laws for any system (dissipative or Lagrangian) governed by a
set of differential equations, ti.~ =0, by the NA method, we try to construct a product of
rti.~ whose action integral does not change variationally. Hence the name "Neutral Action
(NAY' method given to this procedure.

In practice, given any set ofdifferential equations, ti.~ = 0, one must first decide on the
arguments of the characteristics r, which may be functions of the independent variables,
the dependent variables and some or all derivatives of the dependent variables.
Subsequently, one would use eqn (3) to solve for these characteristics. Having solved for
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f", one can then proceed to construct the conserved currents pi valid for the system
governed by this set of differential equations from the product f"~a..

3. ELASTOSTATICS OF BERNOULLI-EULER BEAMS

3.1. Beams with end loading
The Lagrangian density of a nonhomogeneous beam subjected to end loading with

material coordinate x, transverse displacement U = u(x), and bending stiffness B = B(x) is
given by:

L = - ~B(x)u;".

The associated Euler-Lagrange equation that governs this system is given by :

.i = E(L) = Bxxuxx +2Bxuxxx +Buxxxx = O.

(6)

(7)

In this paper, subscripts indicate partial differentiation.
Given the above governing differential equation of the system, one could use the

method outlined in Section 2 to obtain the conservation laws valid for this system. That is,
one needs to solve eqn (3),

EU~) == 0, (8)

for f, where the order of derivatives on which f may depend must be fixed a priori.
From eqn (7), any fourth or higher order derivatives of u can be expressed in terms of

x, Uxx and Uxxx' Thus, for completeness of conservation laws within the framework of the
NA method, one should require that the characteristic be of the form f = f(x, u, ux , Uw

uxxx)' However, on constructing the explicit form of eqn (8), one would need to calculate
the fourth order total derivative of f. Using the above f would lead to extremely lengthy
calculations and thus will not be pursued. Here, we will assume a characteristic f such
that:

f(x,u,u x )' (9)

Given the governing equation of the system, eqn (7), and having assumed the depen
dence of the characteristic f, the condition for the existence of conservation laws by the
NA method, eqn (8), can be expanded as:

au~) -D au~) au~) -D oUM D au~) = 0 (10)
:lu X:l +Dxx xxx :l + xxxX:l .
U uux UUxxx UUxxxx

Since the only unknown in eqn (10) is the characteristic f which depends on x, u, and
ux , it follows that all coefficients ofsecond and higher order derivatives ofu in this equation
must be set equal to zero independently. The resulting set of equations is as follows:

Coefficient Equation

continued overleaf
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(II)

After some lengthy manipulations, the solution of the above set of equations is found
to be:

(12)

where:

(13)

and all CiS are arbitrary constants.
Expressions (11) also impose the following constraint on the bending stiffness B(x),

Note that JrJ... dx3 and JJ... dx2 represent repeated integrations.
Having solved for the characteristic f, one can now proceed to construct divergence

free expressions, Dxpx =Oor pc< =constant,fromtheproductjti. Withl/J = uxrepresenting
the rotation of the cross-section of the beam, M = - Bl/Jx denoting the bending moment,
and Q = M x denoting the transverse shear force, the resulting conservation law is found to
be:

After substitution ofP, j2, and j3 into the above equation, the conserved currents
are given as :
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For only Co =f: 0, r = (L+Qux-M~x) (2fff~dX3+ ff~ dx
2
)

-M~ (ff~dX2+ f~ dx) -Quff~dX2
+Muf~dx+x~U-1X2~2_1U2.

For only C1 =f: 0, px = (L+Qux-M~x) (2fff~dX3+2ff~dx2)
-M~ (ff~dx2+2f~dX) -Quff~dX2
+Muf~dX-X~2+~U.

For only C2 =f: 0, px = -(L+Qux-M~x)ff~dX2+M~f~dX+~~2.
For only C3 =f: 0, r -Qu+M~.

For only C4 =f: 0, px = -x(L+Qux-M~x)+M~.

For only C5 =f: 0, px = -(L+Qux-M~x).

For only C6 =f: 0, r = x2(L+Qux-M~x)-x(Qu+M~)+Mu.

For only C7 =f: 0, px = -Qff~dX2+Mf~dx+xux-u.
For only Cs =f: 0, px = -Qff~dX2+Mf~dx+ux,

For only C9 =f: 0, r = -xQ+M.

For only CIO =f: 0, px = _Q. (16)

It is important to note that for all the integrals appearing in the characteristic J, eqn
(12), and in the conservation laws, eqn (16), integration constants are unnecessary since
they can be absorbed in the constants C3 , C4 , C5, C6, C9 , and C 10'

To interpret the above conservation laws, it is necessary to introduce a distinction
between physical space and material space. In physical space, conservation laws express
physical balances of quantities such as forces, momenta and energy. These balance laws
represent familiar concepts, such as force and moment equilibrium, and they can be obtained
by considering free body diagrams in physical space. Conservation laws in material space
express balances of quantities such as material force and wave momentum (for dynamics).
These quantities are related to motions of material within the material space. The material
force, which is a component in Eshelby's energy-momentum tensor (Eshelby, 1975) and
termed material-momentum by Golebiewska-Herrmann (1981), can be regarded as a force
on a defect and it is obtainable by considering a translation of the defect relative to
the surrounding material. Similar to the connection between physical force and physical
momentum, the rate of change of material force is identified as the wave momentum by
Morse and Feshbach (1953) in the context of a vibrating string. To further understand the
distinction and the significance of material and physical space, the readers can refer to
publications by Golebiewska-Herrmann (1981) (l982a) (1982b) and (1983), where con-
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servation laws in material space and their duality with those in physical space have been
discussed extensively.

One feature of conservation laws in physical space is their independence of material
properties. On inspection of the material constraint equation, eqn (14), it is apparent that
the constants C7 , Cg , C9 and C IO do not play any role in restricting the class of admissible
nonhomogeneities. This implies that conservation laws corresponding to these constants
are physical balance laws valid for any nonhomogeneity and each of them holds inde
pendently. In particular, the expression corresponding to C 10 -:I- °relates to the constancy
of the shear force throughout the beam in the absence of a distributed transverse loading;
the expression corresponding to C9 -:I- °embodies the relationship between the bending
moment and the shear force; and the expressions corresponding to C7 -:I- °and Cg -:I- °
show higher order balances between the bending moment and the shear force for a non
homogeneous beam.

The remaining seven conserved quantities (Co, C ll ... , C 6 -:I- 0) are divergence-free
expressions in material space. Each of them expresses some balance of material force
(L + Qux- MljJx) of various orders. Of these seven laws, only C 3 -:I- °does not contain a
material force term. However, if one inspects eqn (14), one will observe that no material
properties will satisfy the material constraint equation with only C3 being nonzero, implying
that this particular law only exists in combination with others.

Given any nonhomogeneity of the beam, one can construct divergence-free expressions
in material space by solving the material constraint equation, eqn (14), for the relations
among the CiS (i = 0, 1, ... ,6). These relations will provide the necessary combinations
of the basic laws listed in expressions (16) to obtain conserved quantities. Conservation
laws in material space will exist for the class of nonhomogeneities that satisfy the material
constraint equation with at least one Ci -:I- °(i = 0, I, ... , 6). Two examples on construction
of material conservation laws are given below.

For a homogeneous beam, where B(x) = Bo, the material constraint equation imposes
the following constraints on the CiS (i = 0, I, ... ,6),

Co = C 1 = 0,

Cs -:1-0,

C3 = -~C4'

C2 = 1BoC6 ,

and the associated conservation laws in material space are:

(17)

For Cs -:I- 0, px = -(L+Qux-MljJx).

For C3 = -~C4' px = -2x(L+Qux-MljJx) +3Qu-MljJ.

For C2 = 1BOC6 , px = ~(L+Qux-MljJx)+x(MljJ-3Qu)+2BoljJ2+3Mu. (I 8)

The first two laws in eqn (18) are identical to those obtained by Kienzler and Herrmann
(1986a) which were derived by considering virtual displacements and material translation.
They express the zeroth and first order balance of material force valid for a homogeneous
beam. The third law in eqn (18), however, appears to be a new result and it expresses the
second order balance of material force.

A" a second example, consider a beam with bending stiffness B(x) = Box 4
• In this case,

eqn (14) requires that:

C, = C6 = 0,

C2 -:I- 0,

C4 = 2C3 ,

Co = 4BoCs, (19)
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with the corresponding conservation laws being:

For Co = 4BoCs, Px = -x2(L+Qux-Ml/Jx)-2[Mu+x(Qu-Ml/J)]

- 2x4Bol/J 2+4x3Bol/Ju - 2x2Bou2
•
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For C4 = 2C3,

For C2 i= 0,

px = 2x(L+Qux-Ml/Jx)-Qu+3Ml/J.

px = x2(L+Qux-Ml/Jx)-x(Qu+Ml/J)+Mu. (20)

Again, these three laws show first and second order balances ofmaterial force for the beam
considered.

3.2. Beams with distributed IQading
If one allows the presence of a transverse distributed load q(x) acting on the beam,

the Lagrangian density of the system will be modified to:

(21)

and the governing equation is given by:

(22)

Following similar developments as in the case without loading, and assuming the
characteristic to be ofthe form f = f (x, u, ux ), the condition for the existence ofconservation
laws by the NA method, eqn (3), requires that:

(23)

with P(x) and j2(x) as given by eqn (13), and

f3(X) = f f ~[ffl(x)q(x)dx- f f f 2(X)q(X)dX2]dX2 + f f C
7
x;C

S
dx2 +C9X+C10'

(24)

where all CiS are arbitrary constants. The constraint on the bending stiffness B(x) is
identical to the case without loading as given byeqn (14).

The conserved current valid for this system is found to be:

px = -P(L+Qux-Ml/Jx)+f;Ml/J+~f;xBu;

+j2(Ml/J-Qu) +f';(Mu+BuD +f';x(Buux-!BxU2)-!f';xxBu2

+ ff3(x)q(X)dX-f3Q+f1M+f1ABUx-BxU)-f1xxBU. (25)

At first glance, it may seem that the above conserved current is not a truly divergence-free
expression due to the presence of an integral term. However, since both f3(X) and q(x) are
known functions of x, the term Jf3(x)q(x)dx can always be evaluated explicitly. To
construct a divergence free expression for a beam under an arbitrary loading q(x), we use
eqns (13) and (24) to obtain the characteristic f, and construct the corresponding con
servation law by eqn (25).

As a simple example, let us consider the caSe where B(x) = Boand q(x) = qo. For this
homogeneous beam under uniform loading, the material constraint equation (eqn 14)
requires that:
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therefore, byeqns (13) and (24),
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C 3 = -1 C4'

C2 = jBOC6 , (26)

j'(x) = _!C6X2+C4X+C S,

j2(X) = C 6X-1 C4,

j 3() qo ( ~C S i. C 4 IC 3) I C 3 I 2 CX =B
o

--12 6X +48 4X - 6 sX + 6B
o

7X + 2B
o

CgX + gX+C,o· (27)

With jl(X), j2(X), and j3(X) known, conservation laws can be constructed directly
via eqn (25), and the results are:

For C4 ¥- 0, Px = -x(L+Qux-Mt/lx)-1Mt/I+~Qu

5 qo (_L S i. 4Q i. 3M I 2B I+ B
o

240 X qo- 48 X + 12 X + 4 X OUx- 2BOxu).

For Cs ¥- 0, Px = -(L+Qux-Mt/lx).

For C6 ¥- 0, Px = h2(L+Qux-Mt/lx)+x(!Mt/I-Qu)+~Bou; +Mu

For C1 ¥- 0, Px = i4x4qo-ix3Q+1x2M+xBoux-Bou.

For Cg ¥- 0, Px = h3qo-1X2Q+xM+Boux'

For Cg ¥- 0, Px = h 2qo-xQ+M.

For CIO ¥- 0, p x = xqo-Q. (28)

These conservation laws are valid for a homogeneous beam with a constant distributed
loading, and each of them holds independently. The balance laws corresponding to Cs, C4,

C6 ¥- °are conservation laws in material space expressing the zeroth, first, and second order
balance of material force, respectively; and those corresponding to C7 , Cs, Cg , C IO ¥- 0
are laws in physical space showing various balances of bending moment, shear force and
loading.

Given any general loading q(x), and bending stiffness B(x), correspondingconservation
laws can be constructed as in the previous examples.

4. ELASTODYNAMICS OF BERNOULLI-EULER BEAMS

4.1. Beams with end loading
The Lagrangian density for dynamics of a nonhomogeneous Bernoulli-Euler beam is

given by:

(29)

and the Euler-Lagrange equation that governs this system is:
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Ii = E(L) = Hu" +Bxxuxx +2Bxuxxx +Buxxxx =O.
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(30)

Here, t is the time and H(x) is the inertia term pA.
Given the governing equation of the system, conservation laws valid for this system

can be constructed in a manner similar to the statics case. Assuming the characteristic of
conservation laws for this system to be

(31)

the condition for the existence of conservation laws by the NA method as given by eqn (3)
is:

E(fli) == 0,

which requires that:

1 fff cox+ c\d 3 ffC2-Cox2-2CIXd 2 C 2 C Cf = -2 B x + B x - 6X + 4X + 5,

(32)

(33)

where all CiS are arbitrary constants.
The condition for the existence of conservation laws also imposes the following con

straints on the bending stiffness B(x) and the inertia term H(x) :

Hx ( -2 fffCoX;CldX3+ ffC2-CO~-2CIXdx2_C6X2+C4X+CS)

H(-4ff COx+C1 d 2 f C2-Cox
2
-2C1x d

+ B X+ B x

-4C6X-2C3+C4-CII) = O. (34)

Having solved for the characteristic f, one can proceed to construct divergence-free
expressions, Dxpx+D,P' = 0 from the product fli. The resulting conservation law is found
to be:

Px = -f I(L+Qux-Ml/Ix) +f;Ml/I+ !f1xBu;+f2(Ml/I I -Qu,)

+f3(Ml/I-Qu) +f;(Mu+ Bu;) +f;ABuux- !Bxu2)- !f;xxBu2

- f4Q +f:M+f:ABux- Bxu) -f:xxBu,

pI =f\Huxut-F(L-Hul)+f3Huu,+f4Hut-f~Hu. (35)
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After substitution of f I, f 2
, f 3 and f4 into the above equations, the conserved currents

can be written as :

For only Co #= 0, F = (L+Qux-Mif;x) (2ff f jdx3+ff~ dX1
)

-Mif; (ffjdx
2+f~dX) -Quffjdx

2

pt = HUxut ( -2fffjdx3
- ff~ dx

2
) +Huut ffjdx2

•

For only C, i: 0, p x = (L+Qux-Mif;x) (2 f ff~dX3+2 ffidXZ)

-Mif;(f f ~dx2+2 f i dX) -Quff~dX2

For only Cz i: 0, px = -(L+Qu:x-Ml/tx)ff~dxl+Ml/t f ~dx+ 1l/t2,

pt = Huxu,ff~dX2.

For only C3 :p. 0, px = -Qu+MIfi,

For only Cs i: 0, px = -(L+Qux-Ml/tx),

For only C1 #= 0, px = -Qff jdx2+M f jdx+xu:x- u•

pI = HUtIfi dx2.

For only Cs +0, px = -QIf~dX2+Mf~dx+ux.
pI = HUtff~dX2.
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For only C9 # 0, px = -xQ+M,

For only CIO # 0, px = - Q,

For only CII # 0, Px = t(Ml/It-Qut),

pt = -t(L-Hut2).

For only Cl2 # 0, Px = Ml/It-Qut,

pt = -(L-Huil

For only C13 # 0, Px = - tQ,

pt = tHut - Hu.

3331

(36)

Again, as in statics case, integration constants are unnecessary for all the integrals
appearing in the characteristic f and in the conservation laws.

On inspection of eqn (34), which embodies the material constraint equations for the
dynamics case, constants corresponding to CiS with i = 7, 8, 9, 10, 12, 13 do not play any
role in restricting the admissible nonhomogeneities. Therefore, conservation laws cor
responding to these C;s # 0 are physical balance laws valid for all material properties and
each holds independently. With i = 7,8,9,10 and 13 expressing various balances of bending
moment, shear force and inertia; and i = 12 depicting the balance of total energy and the
rate of work done valid for any nonhomogeneous beam.

The remaining eight divergence-free expressions are material balance laws for the
dynamics of a nonhomogeneous Bernoulli-Euler beam. On inspection of eqn (34), the two
laws that correspond to C3 # 0 and Cll # 0 cannot exist independently. These two laws
always exist in combination with the remaining six (i = 0, I, 2, 4, 5, 6) which show various
balances of material force (L+Qux-Ml/Ix) and wave momentum (Huxut).

Given any nonhomogeneous beam, material conservation laws that relate to the bal
ance of material force and wave momentum can be constructed similarly to the static case.
Using eqn (34) to establish the relation of the CiS that appear in this equation, material
balance laws valid for that nonhomogeneous beam, if any, can be constructed with the
basic expressions listed in eqn (36).

4.2. Beams with distributed loading
If one allows the presence of a transverse distributed load q(x) acting on the beam,

the Lagrangian density of the system will be modified to:

L = !H(x)u; - !B(x)u1x -q(x)u,

and the differential equation that governs this system is given by:

Assuming the characteristic of conservation laws to be

the condition for the existence of conservation laws by the NA method,

E(fA) == 0,

requires that:

(37)

(38)

(39)

(40)
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f l - 2fffCOX+Cl d 3 ffC2-Cox2-2C1Xd 2 2 ,- - --- X + X -C X +C X+CB B· 6 4 5,

where all CiS are arbitrary constants.
The constraints on the material properties, B(x) and H(x), are identical to the dynamic

case without loading as given byeqn (34).
The corresponding conservation law is :

px = -f'(L+Qux-Ml/Jx)+f;Mt/J+ ~f;xBu;+f2(Mt/Jt-Qut)

+f3(Ml/J Qu) +f;(Mu+Bu;) +f;x(Buux- !Bxu2)- !f;xxBu2

+ f f4(x)q(x)dx-f4Q+f.~M+f:x<Bux-Bxu)-f:xxBu,

(42)

Given any q(x), B(x) and H(x), conservation laws can be determined by first solving
the material constraint equation, eqn (34), for the relation of the constants CiS, and then
evaluating the precise form of fiS by eqn (41). Finally, conservation laws valid for that
system can be obtained byeqn (42).

5. COMPARISON WITH NOETHER'S FIRST THEOREM

Conservation laws derived for the statics and dynamics of a non-homogeneous
Bernoulli-Euler beam presented in this paper are obtained through the NA method pro
posed in Honein et al. (1991). Since a nonhomogeneous Bernoulli-Euler beam is a non
dissipative system which admits a variational formulation, the classical Noether's first
theorem is also applicable for construction ofconservation laws for this Lagrangian system.
It is the purpose of this present section to discuss our results within the context of Noether's
first theorem and to compare the two methods of constructing conservation laws.

Unlike the NA method, whose starting point for construction of divergence-free
expressions is the governing equations of the system, Noether's first theorem starts with
the Lagrangian density of the system. Thus, while the NA method is applicable to any
system governed by a set of differential equations. Noether's methodology is applicable
only to Lagrangian systems. Details on Noether's first theorem can be found in Noether
(1918), Logan (1977), Olver (1986) and Bluman and Kumei (1989).

In brief, Noether stated that if a given system with m independent variables x'
(i = 1, 2, ... , m) and n dependent variables u!' (k = 1, 2, ... ,n) is subjected to the set of
infinitesimal transformations:

u!' -+- u!'* = rI +eqi, (43)

where e is an infinitesimal parameter, (~i and cf>k are functions dependent on Xi and rI for
geometric symmetry, and also dependent on derivatives of u!' for generalized symmetry),
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the condition for the existence of conservation laws is that the action integral of the system
be invariant under this set of transformations. With L being the Lagrangian density of the
system, the condition for the existence of conservation laws is given by:

Or explicitly,

where

rLdV= r L*dV*.In In*

k aL .
(DJQ ) azlj +Di(L~') = 0,

(44)

(45)

(46)

Bessel-Hagen (1921) extended Noether's first theorem by inclusion of the so-called
"divergence symmetries". Instead of requiring the strict invariance of the action integral
under a set of infinitesimal transformations, Bessel-Hagen required that the action integral
be invariant up to a divergence term. This requirement is stated mathematically as:

(47)

where Bi is a set ofarbitrary functionals. Thus, eqn (47) can be considered as the requirement
for the existence of conservation laws for the general form of Noether's first theorem.

In Olver (1986), it is shown that Noether's condition for the existence ofconservation
laws, eqn (47), implies:

. nk kDiP' = \! E (L), (48)

where Ek(L) designates the Euler-Lagrange equations governing the system, and Qk are
the characteristics of conservation laws within the framework of Noether. On inspection of
eqn (48), the parallel between Noether's and the NA method of constructing conservation
laws becomes immediately apparent. In the NA method, one seeks the form of the charac
teristic fk such that divergence-free expressions can be constructed out of the product of
the characteristics and the governing equations tik, or explicitly:

(49)

For Lagrangian systems, the governing equations are the Euler-Lagrange equations
of the system:

(50)

In such a case, the characteristics (Qk) within Noether's framework and the charac
teristics (fk) in the NA method coincide.

In fact, it has been shown in detail by Chien (1992) that for Lagrangian systems the
requirement for the existence of conservation laws by the NA method and by Noether's
first theorem as extended by Bessel-Hagen are mathematically identical. All conservation
laws obtainable through Noether's first theorem can also be constructed via the NA method.
Even though the two methodologies for construction conservation laws are essentially
equivalent when applied to Lagrangian systems, it will be shown here via the following
example that in some cases the NA method might be more efficient.
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For the case of a homogeneous beam with end loading only, the conservation law
corresponding to C 2 = 1BoC6 in eqn (18) is given as:

(51)

To obtain this balance law within Noether's framework, we must use Noether's first
theorem with the extension by Bessel-Hagen including divergence symmetries, which cor
responds to eqn (47), requiring that:

~ = x2,

4> = 3xu,

sx = 2Bu.~. (52)

For this special case, the NA method of constructing conservation laws is shown to
be more efficient than the classical method of Noether's. While Noether's methodology
requires the use of three unknown functions (c; = c;(x, u), 4> = 4>(x, u), BX BX(x, u, ux )),

the NA method uses only one unknown function (f f(x, U, uJ) to arrive at the same
conservation law.

6. CONCLUSIONS

In the present contribution, conservation laws obtained through the NA method of
constructing divergence-free expressions are presented for the statics and dynamics of a
nonhomogeneous Bernoulli-Euler beam. Two sets of conservation laws are obtained. The
first set consists of conservation laws in physical space, which express various balances of
bending moment, shear force, loading, energy and rate ofwork done. These physical balance
laws are valid for any nonhomogeneous beam. The other set consists of conservation laws
in material space, which express various balances of material force and wave momentum.
Material balance laws are found to be valid only for a certain class of nonhomogeneities.
If a given nonhomogeneity of the beam satisfies the material constraint equations with no
null results on the constants appearing in the constraint equations, then divergence-free
expressions in material space exist for that class of material properties.

A complete duality between physical balance laws and material balance laws is
established in Golebiewska-Herrmann (1981) (1982a) (1982b) and (1983), where quantities
such as physical stress and material-momentum are placed on equal footing describing the
properties of physical and material space, respectively. As physical balance laws describe
the motion of the system in physical space, material balance laws as discussed in the above
references can be used to describe the motion of defects in material space. Consequently,
the material conservation laws derived here might be useful in the analysis of fracture and
defects of nonhomogeneous beams.

Since a nonhomogeneous Bernoulli-Euler beam is a Lagrangian system, conservation
laws can be derived for this system using the classical Noether's first theorem. As has
been shown by Chien (1992), the NA method and Noether's theorem for constructing
conservation laws yield identical results for Lagrangian systems, all conservation laws
presented here can be constructed using Noether's first theorem as extended by Bessel
Hagen. However, on comparison of the two methodologies, the NA method seems to be
more powerful. While Noether's first theorem involving generalized symmetry provides the
theoretical groundwork for obtaining divergence-free expressions, it offers no systematic
procedure for doing so. The NA method, however, allows its users a systematic approach.
Also, it is shown by a specific example here that the NA method for constructing con
servation law might be more efficient than the classical Noether's first theorem. Thus, aside
from being applicable to dissipative systems, the NA method should be more advantageous
than Noether's theorem in the construction of conservation laws even for Lagrangian
systems.
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The conservation laws obtained here are not exhaustive. If one allows the dependence
of the characteristic to include higher order derivatives of the dependent variable, additional
conservation laws may be obtained. For this Lagrangian (self-adjoint) system governed by
a linear differential equation higher order conservation laws that are quadratic in u and its
derivatives can be obtained using a linear recursive operator as discussed in Olver (1986).
This type of conservation law corresponds to characteristics that are linear in u and its
derivatives. Using a recursive operator, conservation laws that depend quadratically on
higher order derivatives of u can be constructed from lower order dependence quadratic
conservation laws. It can be shown that the constraint on the bending stiffness function
B(x) for higher order conservation laws obtained by recursion is identical to that of the
original lower order conservation law.

As is noted in Olver (1986), a self-adjoint linear system with one quadratic conservation
law always has an infinite hierarchy of such laws depending on higher and higher order
derivatives of u. Once we employ a recursive operator, we must also investigate topics such
as equivalent conservation laws, trivial conservation laws and completeness.

To obtain conservation laws which correspond to characteristics which are quadratic
or of higher order in u and its derivatives, one must solve for general nonlinear charac
teristics. This extension, however, is not possible at the moment due to difficulties in
obtaining the explicit form of the existence condition for conservation laws with a higher
order nonlinear dependence characteristic. It is hoped that this difficulty will be overcome
in the near future with the aid of symbolic manipulation on computing devices with large
memory.
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